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From these results we can conclude that the dimensional 
heat-up time (more accurately, the e-folding time) is given by 

(33) 

which is much less than a diffusion time (which scales as 
Ra”‘). From equation (33) one can show that the heat-up 
time for an insulating air gap in a pane of thermal glass is 
of the order of seconds, for the liquid oxygen in a spacecraft 
fuel tank it is of the order of a few hours, for the liquified 
natural gas in typical land-based storage tanks it is of a few 

days. while for the earths mantle, the heat-up time may be 
of the order of IO9 yr. This last figure is very approximate as 
it depends upon the properties of the earth’s mantle which 
are not accurately known. It does suggest. howcvcr. that the 
convection patterns in the earth’s mantle. which are prc- 
sumably responsible for continental drift. may not have yet 
reached steady state. 
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NOMENCLATURE 

h, gap width between concentric cylinders or 
spheres; 

C,, C,, constants, see (2) and (5); 
D. diameter of cylinder or sphere; 
D,, D,, inside and outside diameters respectivelv of 

concentric cylinder or sphere; 
gravitational acceleration; 
component of gravitational acceleration along 
the surface; 
thermal conductivity; 
effective thermal conductivity of fluid in gap 
between concentric cylinders or spheres; 
length of plate in flow direction; 
average Nusseit number based on the relevant 
dimension, s; 
Prandtl number; 
curvilinear distance along surface from 
stagnation point; 
surface temperature: 
fluid temperature far from surface; 
horizontal distance from axis of symmetry to 
point on surface; 

Ra,, Ra,, Rayleigh number based on (T, - Tm) and 
dimension s and r, respectively ; 

/A thermal expansion coefficient; 
A,, A,, laminar and turbulent conduction thickness: 

k, thermal diffusivity of fluid; 
1’. kinematic viscosity of fluid. 

INTRODUCTION 

THERE is a striking similarity between the processes govern- 
ing the growth of a liquid condensate film, and the growth 
of the inner region of a natural convection boundary layer. 
Exploitation of this analogy has enabled the authors to 

obtain a general approximate solution to a broad class of 
free convection problems, predicting heat-transfer rates in 
good agreement with experimental results. The detailed 
development of this method and the comparison of pre- 
dictions and measurements for several problems will appear 
elsewhere [l]. This note is intended to draw the reader’s 
attention to this method, and to summarize the results. 

In the main, the method applies to the problem ol 
assessing the heat transfer from the external surfaces of 
single two-dimensional or axisymmetric bodies immersed in 
an extensive fluid. although enclosure problems are also 
considered in [t]. The method is first developed and tested 
for the case where the flow is laminar over the entire surface 
of the body. It is then extended to the turbulent case. A 
simple criterion is then proposed to predict the extent of 
the surface subjected respectively to laminar and turbulent 
heat transfer. 

LAMINAR HEAT TRANSFER 

The velocity extremum in a free convection lammar 
boundary layer divides the flow into two regions: the inner 
region adjacent to the wall, and the outer region. A central 
premise of the present model is that, in the inner region. 
inertial forces are not important and energy transfer normal 
to the walls is by conduction only. It is also hypothesized 
that the fraction of the boundary layer’s total buoyancy 
carried by the inner region is invariant with s. With these 
assumptions, the rate of growth of the thickness of the inner 
region is found to be completely tixed locally, in a manner 
similar to thegrowth of a condensate film. As a consequence, 
the heat transfer can be calculated directly by integrating 
along the surface. The resultant expression for the heat 
transfer is derived in [l]. Expressed in terms of the local 
conduction thickness (defined as that thickness of stagnant 
fluid offering the same resistance to heat transfer as that 
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actually offered by the boundary layer) it is: 

(1) 

CL is a function only of the Prandtl number and is given 
approximately by: 

c, = 0.48(&LJ (2) 

The value of i is zero for two-dimensional bodies and unity 
for axisymmetry ones. An expression, similar to (1) can be 
derived for the average conduction thickness, A,; it is given 
in [l]. 

Equation (1) applies to the special case where T, and T, 
are constant. A more general equation, accounting for vari- 
ations in T, and T,, is given in [l]. When A, is small com- 
pared to the body dimensions. the local heat flux per unit 
area, q/A, is computed from (1) using locally the equation 
(q/A) = k(T,- T,)/A,. When A, becomes large, curvature 
effects are approximately accounted for by surrounding the 
body with a stagnant fluid layer of (variable) thickness given 
by A,(s) as computed from equation (1) and solving the 
resultant conduction problem. Usually an approximate 
“quasi-one dimensional” solution to this problem is 
sufficient. 

TURBULENT HEAT TRANSFER 

An equation for the local conduction thickness for tur- 
bulent flow is proposed in [ 11. It is: 

(3) 

where 

A(4) = cos113 4 for 19” < 4 < 90” (4a) 

A(+) = 0.71 sin”34 for -90” < 4 < 19” (4b) 

C = 0.14Pr0’084 (5) 

and 4 is the local angle of the surface from the vertical. $J is 
positive for either an upward facing heated surface or a 
downward-facing cooled surface. The above expressions for 
AI and A, are similar. ,In both cases the body shape is 
represented exclusively through one term, namely A($) in 
the turbulent case, and the squared-bracketed part of (1) in 
the laminar case. Similarly the Prandtl number dependence 
is represented through the terms C, and Cr. In both cases 
the remaining term represents the relevant length scale. For 
turbulent flow the important length scale is independent of s 
and is equal to the “thermal length”, x = (vx/gpAT)“3; for 
laminar flow it is x. (s/Y,)‘j4. 

LAMINAR AND TURBULENT HEAT TRANSFER 

When laminar and turbulent heat transfer occur simul- 
taneously on different portions of a body, a rule is needed 
to establish the extent of the surface covered by each. The 
following simple procedure, based entirely on local quantities 
is proposed in Cl]. It is: 

+A, < A,, equation (1) is valid 

+A, > At, equation (3) is valid. > 
(6) 

The “transition” laminar conduction thickness is therefore 
given by A, = 3148,. Substituting equations (1) and (3) into 
this condition and solving for Ra, yields a “transition” 
Rayleigh number, denoted by Ra:. Ra: is plotted as the 

. Thermal onstobality [3] 

a Hydrodynamic (water) 

Angle from the wtlcol. + 

FIG. I. Measurements of critical Rayleigh number, Ra,,,, 
and Rayleigh corresponding to A, = 4/3A,. Ra:. 

solid curves in Fig. 1 for the special case of a flat tilted 
plate. The data [2,3] are measurements of Ra, at the onset 
of turbulence, denoted by Rae,$. The agreement of these 
data with the above criterion lends support to the proposed 
rule. 

RESULTS 

The above model is applied to a number of specific 
geometries in [ 11. The following summarizes the findings. 

Heat transfer from a circular cylinder 
For this geometry i = 0 and equation (1) leads to: 

2 
Nun = - 

In(l+ 1.94/C1Rag4)’ 
(7) 

To obtain this result the curvature correction has been 
made. For turbulent flow everywhere on the cylinder, 
equation (2) yields: 

Nun = 0.72C,Rajj3. (8) 

The results for laminar and turbulent flow on different 
portions of the cylinder, obtained from equation (6) are 
given in [l]. The equations are in good agreement with 
the measurements reported in [4,5]. 

Laminar heat transfer from a sphere 
Applying equation (1) to a sphere (i = 1). and accounting 

for curvature effects, leads to 

Nun = 2+ l.l7C,R#. (9) 

Heat transfer between concentric cylinders and spheres 
For concentric cylinders, each cylinder is considered to 

be surrounded by a stagnant fluid layer of thickness given 
by (1). The fluid between the stagnant layers is assumed 
to vary in temperature only in the circumferential direction, 
Since this circumferential temperature variation is unknown, 
an unknown constant arises in the solution which must be 
determined from experiment. The final equation for the heat 
flow, expressed in terms of the effective thermal conductivity, 
k,s, is: 

Ca WblDJ 
k = 0’80C~b3’4{~;3’5+~~3,5)5,4~ Rai14. (10) 

If kR/k from (10) is smaller than unity, kf/k = 1.0 is to 
be used. The data of Grigull and Hauf [7] and Beckman 
[8] for air are correlated in Fig. 2 using the parameters 
in (10). Data for other Prandtl numbers are also well 
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. Grigull and Hauf 002 < D, < 0.06 m 2oFFh 
Heut trunsjwfbn a cooling slot 

The heat transfer to the fluid flowing by natural convection 
between two parallel and vertical plates is found to hc 
given by: 

,~~~,=:(;iRn:l’,~“~,(-II”+’ 

i 
IO' 

FIG. 2. Correlation of data for heat transfer across 
the gap between concentric cylinders. Circled data 

points appear to contain errors in tabulation. 

. Data of Ellenbaas 

I I.1 1 II. II,, 

I6 I 10 to2 IOJ Id 105 

Ra:=(+)Ra, 

FIG. 3. Correlation ofdata for a cooling slot with isothermal 
walls at the same temperature. 

correlated by this expression. A similar analysis for con- 
centric spheres yields: 

As before, if kr/k from (11) is less than unity, a value of 
1.0 is to be used. The data of Bishop. Powe et a/. [9] are 
well correlated by this equation for a wide range of 
geometries for both air and oils. 

l-(7/4) 
+ mCi~ Ru; as Rtr: + 0 

3’ 
I12h) 

r is the hydrauhc diameter of the passage (twice the spacing 
between the plates). L is the length of the cooling passage. 
r(7.14) is a gamma function. and Ru: = (r:L)Ra,. When the 
plates are isothermal and identical in temperature. the 
constant C3 was found to be [32r(71’4)C~]~:~: if one of the 
plates is adiabatic C3 is [16r(7/4)C,]Jj”. A slight alteration 
of the constant C was made to improve the agreement with 
Elenbaas’ data [lo] for widely spaced plates. A comparison 
of equation (12) and Elenbaas’ data is given in Fig. 3. 
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